Arrays

An array is a series of elements of the same type placed in contiguous memory
locations that can be individually referenced by adding an index to a unique identifier.

For example, an array containing 10 integer values of type int called m could be
represented as:

index i 0 1 2 3 4 5 6 7 8 9

valuem[il] | 0 | o |0 |0 | 0| 0]|0|0|O]|O

size of array = 10

Each cell represents an element of array. The elements of type int are numbered
from 0 to 9, being 0 the first and 9 the last. In C, the first element in an array is always
numbered with a zero (not a one), no matter its length.

Like a regular variable, an array must be declared before it is used. A typical

declaration for an array in C++ is:
type name [elements];

where type is a valid type (such as int, float...), nameis a valid identifier and
the elements field (which is always enclosed in square brackets []), specifies the length
of the array in terms of the number of elements.

Therefore, the m array, with ten elements of type int, can be declared as:
int m[10];

Accessing the values of an array
The values of any of the elements in an array can be accessed just like the value of

a regular variable of the same type. The syntax is:
name [index]

For example, the following statement stores the value 34 in the third element of m:
m[2] = 34;
and, for example, the following copies the value of the third element of mto a

variable called x:
x = m[2];

Notice that the third element of m is specified m[2], since the first one is m[0], the
second one is m[1], and therefore, the third one is m[2]. By this same reason, its last
element is m[9]. Therefore, if we write m[10], we would be accessing the eleventh
element of m, and therefore actually exceeding the size of the array.

E-OLYMP 8953. Print array Array of n integers is given. Print all its elements in
column, do not change their initial order.

https://www.e-olymp.com/en/problems/8953

» The problem can be solved using a loop. Read and immediately print the
elements of the array, one per line. But we’ll solve the problem with an array.

#include <stdio.h>

int a, i, n;
int m[101];

int main (void)

{

}

// read the value of n, the size of array
scanf ("%d", &n);
// read the array itself
for (i = 0; 1 < n; 1++)
scanf ("%d", &ml[i]);
// print the elements of array in specified order
for (i = 0; 1 < n; 1i++)

printf ("%d\n", m[i]);

return O;

E-OLYMP 7829. Sum of elements Given sequence of n real numbers. Find the
sum of all its elements. First line contains number n. Next line contains n real numbers.
Print the sum of all sequence elements.

Sample input Sample output

22 .4

1.2 1.3 5.7 1.8 12.4

» Let’s divide the solution of the problem into the next parts:

1. Read the sequence of doubles into array;
2. Find the sum of array elements using for loop;
3. Print the resulting sum.

#include <stdio.h>

int i, n;
double s, m[100];

int main(void)

{

scanf ("%d", &n) ;

// read array
for(i = 0; 1 < n; i++)
scanf ("$1f",&m[i]);

// find the sum of array elements

s = 0;

for(i =
S = s

1

4

0; i
+ mJ[

< n; 1++)
]

https://www.e-olymp.com/en/problems/7829

// print the answer
printf ("$.11£f\n", s);
return 0;

}

E-OLYMP 4730. Fibonacci Fibonacci numbers is a sequence of numbers F(n),
given by the formula:

FO=1F1)=1FnNn)=Fn-1)+Fn-2)
Given the value of n. Print the n-th Fibonacci number.

Sample input Sample output
4 5

» Let’s declare array fib of size 45. Value of fib[i] will contain the i-th Fibonacci
number, so fib[i] = F(i).

index i 0 1 2 3 4 5 6 7 8 9

fib[i] -2 3|5 |8 |13|21|34]55

To answer the question its enough to read n and print the value of fib[n].

#include <stdio.h>
#define MAX 46

int i, n;
int fib[MAX];

int main (void)

{
// initialize the base case n =0, n =1
fib[0] = 1; fib[1l] = 1;

// calculate the values of fib[i] = F(i). Preprocessing
for(i = 2; i < MAX; i++)
fib[i] = fib[i-1] + fib[i-2];

// read the value of n and print F(n) = fib[n]
scanf ("%d", &n) ;

printf ("$d\n",fib[n]);

return 0;

}

E-OLYMP 928. The sum of the largest and the smallest Find the sum of the
smallest and the largest element in array.

Sample input Sample output
4 5
1 2 3 4

» Find minimum and maximum in array. Print their sum.

#include <stdio.h>

https://www.e-olymp.com/en/problems/4730
https://www.e-olymp.com/en/problems/928

int 1, n, mn, mx;
int m[100];

int main (void)

{

// read array

scanf ("%d", &n);

for (i = 0; 1 < n; 1++)
scanf ("%d", &m[i]);

// find min and max in array

mn = 100; mx = -100;

for (i = 0; i < n; i++)

{
if (m[i] < mn) mn = m[i];
if (m[i] > mx) mx = m[1];

}

// print the answer
printf ("%d\n", mn + mx);
return 0;

E-OLYMP 7833. More than average Given array of n integers. Find the sum and
the amount of numbers, greater than the arithmetic average of array elements.

Sample input Sample output

12 2

1 6 2 6 3

» Find the sum s of all elements. The arithmetic average equals to s / n. Now we
need to find the sum and amount of such ml[i] that m[i] > s / n. To avoid integer
division, we can rewrite an equality as m[i] * n > s.

#include <cstdio>
#include <algorithm>
using namespace std;

int i, s, n, sum, cnt;
int m[1017];

int main (void)

{

scanf ("%d", &n);
// read array, find the sum s of elements
for (i = 0; 1 < n; 1++)
{
scanf ("%d", &m[i]);
s += m[i];

}

// find the sum and amount of elements greater than average
sum = cnt = 0;
for (1 = 0; 1 < n; 1i++)

https://www.e-olymp.com/en/problems/7833

printf ("$d %d\n", sum, cnt);
return O;

}

E-OLYMP 8963. Minimums to the left Given array of n integers. Move all
minimum elements to the beginning of the array without changing the order of others.
» Find the minimum element min. Move along the array from right to left and

move non-minimal elements to the right. The part of the array that remains to the left is
filled with the minimum element.

Consider an example given in problem statement.

6 | 3|-7|4|7|4|5|__p|-7|7|6]|3|4]|-4]|F5

Declare an array.
int m[1017];

Read the input array. Find the minimum element min.

scanf ("%d", &n);
min = 100;
for (i = 0; 1 < n; i++)
{
scanf ("%d", &m[i]):;
if (m[i] < min) min = m[i];

}

Declare two indices i and j. Move through the array from right to left. If m[j] is not
equal to the minimum, then copy this number to m[i].

The rest of the array elements from index 0 to i should be filled with minimum
element.

while (1 >= 0)
{

m[i] = min;

https://www.e-olymp.com/en/problems/8963

Print the resulting array.
for (i = 0; i < n; i++)

printf("sd ", m[i]);
printf ("\n");

E-OLYMP 2098. Invertor Print array elements in the reverse order.

Sample input Sample output
7 1 353142
241 35 31

» To swap the values of two variables a and b we need additional variable temp:
temp =a; a="Db; b =temp;

#include <stdio.h>

int n, i, Jj, temp;
int m[1107];

int main (void)
{
// read array
scanf ("%d", &n);
for (i = 1; 1 <= n; i++)
scanf ("%d", &ml[i]);

// reverse array

i=1; jJ = n;

while (i < 7J)

{
// swap (m[i], m[]
temp = m[i]; m[i] = m[]J]; m[J] = temp;
it+; J--;

}

(-
[—
~

https://www.e-olymp.com/en/problems/2098

// print array

for (i = 1; 1 <= n; i++)
printf ("%d ", m[i]);

printf ("\n");

return 0;

}

E-OLYMP 4751. Diagonals Find the sum of elements on the main and the
secondary diagonal.

Sample input Sample output
4 411 1327
134 475 30 424

303 151 419 235
248 loo 90 42
318 237 184 36

» Let m[0..n —1][0..n — 1] be two dimentional array. Element m[i][j] belongs to:
e main diagonal if i = ;
e secondary diagonal ifi +j=n-1;

] >] >
0 1 2 ...n-2 n-1 0 1 2 ...n-2 n-1
0 0
1 1
2 2
i - i —
I I I I
I I I I
n-2 n-2
n-1 n-1
\j \/
=] i+j=n-1

#include <stdio.h>

int i, 3j, n;
int a, b;
int m[510][5107];

int main (void)
{
// read two dimentional array
scanf ("%d", &n);
for (i = 0; 1 < n; 1++)
for (3 = 0; 7 < n; J++)
scanf ("%d", &m[i][j]):

// find the sum of elements on the main and secondary diagonal

https://www.e-olymp.com/en/problems/4751

a=Db=20;
for (i 0;
for (3 = 0;
{
if (1 ==
if (1 + 3
}
printf ("%

return 0;

%d\n",

ay

b);

